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INTRODUCTION 

All spacecraft require attitude determination at some 
level of accuracy. This can be a very coarse 
requirement of tens of degrees, in order to point solar 
arrays at the sun, or a very fine requirement in the 
milliarcsecond range, as required by Hubble Space 
Telescope. A toolbox of attitude determination 
methods, applicable across this wide range, has been 
developed over the years [ 1 J. There have been many 
advances in the thirty years since the publication of 
Reference [1], but the fundamentals remain the same. 
One significant change is that onboard attitude 
determination has largely superseded ground-based 
attitude determination, due to the greatly increased 
power of onboard computers. The availability of 
relatively inexpensive radiation-hardened 
microprocessors has led to the development of "smart" 
sensors, with autonomous star trackers being the first 
spacecraft application. Another new development is 
attitude determination using interferometry of radio 
signals from the Global Positioning System (GPS) 
constellation. This article reviews both the classic 
material and these newer developments at 
approximately the level of [l], with emphasis on 

. methods suitable for use onboard a spacecraft. We 
discuss both "single frame" methods that are based on 
measurements taken at a single point in time, and 
sequential methods that use information about 
spacecraft dynamics to combine the information from a 
time series of measurements. 

SINGLE FRAME METHODS 

We first consider single-frame methods based on vector 
measurements. The length of a vector has no 
information relevant to attitude determination, so each 
reference vector contains two independent scalar pieces 
of attitude information. Many spacecraft attitude 
determination methods use exactly two vector 
measurements, the minimum required to determine the 
attitude [2]. Examples are the unit vector to the Sun and 
the Earth's magnetic field vector for coarse 'sun-mag' 
attitude determination or unit vectors to two stars for 
fine attitude determination. TRIAD, the earliest 
published algorithm for determining spacecraft attitude 

from two vector measurements, has been widely used in 
both ground-based and onboard attitude determination 
[l, 3]. Since most modern applications use more than 
two vectors, we will only consider methods based on 
Wahba's optimality criterion, which optimally weight 
an arbitrary number (greater than one!) of observations. 
We will also discuss single-frame methods that convert 
GPS phase measurements to equivalent vector 
measurements. 

Wahba's Problem 

In 1965, Grace Wahba posed the problem of finding the 
direction cosine matrix, or attitude matrix, as the 
orthogonal matrix A with determinant+ 1 that 
minimizes the loss function [4] 

(1) 

where {b;} is a set of unit vectors measured in a 
spacecraft's body frame, {r1} are the corresponding unit 
vectors in a reference frame, and {a;} are non-negative 
weights. We can choose the weights to be inverse 

variances, a,= a-;2
, in order to relate Wahba's 

problem to Maximum Likelihood Estimation [5]. This 
choice differs from that of Wahba and many other 
authors, who assumed the weights normalized to unity, 
and it has no effect on the attitude estimate. Wahba's 
loss function is motivated by the fact that in the absence 
of measurement errors, 

It is possible and has proven very convenient to write 
the loss function as 

L( A) ,\ tr( ABT) 

with 

and 

'""" a L...,, I 

B = '""" a b rT . L...,, 1 1 I 

(2) 

(3) 

(4) 

(5) 
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Now it is clear that L(A) is minimized when the trace, 

tr(ABT), is maximized. J. L. Farrell and J.C. 

Stuelpnagel, R.H. Wessner, J. R. Velman, J.E. Brock, 
R. Desjardins, and Wahba presented the first solutions 
of Wahba's problem; but their solutions did not find 
extensive application [6]. 

Wahba's problem is closely related to the orthogonal 
Procrustes problem, which is to find the orthogonal 
matrix A closest to B in the sense of the Frobenius (or 
Euclidean, Schur, or Hilbert-Schmidt) norm [7) 

Since 

Wahba's problem is equivalent to the orthogonal 
Procrustes problem with the proviso that the 
determinant of A must be + 1. 

Davenport's q Method 

(6) 

(7) 

Paul Davenport employed the quaternion 
parameterization of the attitude matrix, Eq. (31) of 
Section 5 5 .1, to provide the first successful application 
of Wahba's problem to spacecraft attitude 
determination [l, 8, 9). The notation in this article 
differs from that in Section 5 .5 .1, though; we use 

f31 

q esin(¢/2) )- f32 
(8) q= = 

q4 cos(¢/2) /33 
f3o 

Since A(q) is a homogeneous quadratic function of q, 

the scalar tr( ABT) can be written as a quadratic form 

where K is the symmetric traceless matrix 

S ItrB 

,ii' 

z 

trB 

with/ being the 3x3 identity matrix, 

and 

(9) 

(10) 

(11) 

B23 -B32 

Z= B31 - B13 = I:,a,b, xr,. (12) 

812 - 8 21 

It is easy to prove that the optimal unit quaternion is the 
normalized eigenvector of K with the largest 
eigenvalue, i.e., the solution of 

(13) 

Very robust algorithms exist to solve the symmetric 
eigenvalue problem [7, 10). There is no unique solution 
if the two largest eigenvalues of Kare equal. This is not 
a failure of the q method; it means that the data aren't 
sufficient to determine the attitude uniquely. 

Quaternion Estimator (QUEST) 

This algorithm, first applied in the MAGSAT mission 
in 1979, is the most widely used algorithm for Wahba's 
problem [11). Equation (13) is equivalent to the two 
equations 

(14) 

and 

(15) 

Since the inverse of a matrix is equal to its adjoint (or 
adjugate) divided by its determinant [7, 10], Eq. (14) 
gives the optimal unit quaternion as 

where 

X !!!! adj[O.ma., + trB)/ - S]z . . 

and 

y a det[(Amax + trB)J - SJ. 

(16) 

(17) 

(18) 

The optimal quaternion is not defined by Eq. (16) if 

1
2 + lxj2 0 , so Shuster devised the method of 

sequential rotations to handle this case [11, 12]. This 
computes the quaternion in a rotated coordinate frame, 
using rotations that are very easily computed. 

Equations (16)-(18) clearly require knowledge of).,,,.,,, 
which is obtained by substituting these equations into 
Eq. (15), yielding 



where 

a= (trB)2 -tr(adjS), 

b = (trB}2 + ZT Z , 

(20a) 

(20b) 

(20c) 

Equation (19) is simply the characteristic equation 
det(Ama,1 - K) = 0. Shuster observed that Arna, is very 
close to)..0 since the optimized loss function 

(21) 

is expected to be small. Thus Arna, can be easily 
obtained by Newton-Raphson iteration of Eq. (19), 
starting from ~ as the initial estimate. In fact, a single 
iteration is generally sufficient. The analytic solution of 
the quartic characteristic equation is slower and no 
more accurate than the iterative solution. Numerical 
analysts know that solving the characteristic equation 
for Ara .. makes QUEST less robust in principle than 
Davenport's original q method, but it is quite reliable in 
practice if the characteristic equation is evaluated in the 
partially-factored form of Eq. (19) [13]. 

Singular Value Decomposition Method 

The Singular Value Decomposition (SVD) of Bis [7] 

where U and Vare orthogonal, and the singular values 
obey the inequalities l:11 :a:: E:i2 :a:: ~ 3 :a:: 0. The trace is 
invariant under cyclic permutation of its argument, so 

The trace is maximized, consistent with the constraint 
de~ A = 1, by the optimal attitude matrix [ 14 ]: 

A =Udiag[l 1 (detU)(detV)]Vr. 
opt 

(24) 

The SVD solution is completely equivalent to the 
original solution by Farrell and Stuelpnagel, but robust 
SVD algorithms are readily available now [7, 10]. In 
fact, computing the SVD is one of the most robust 
numerical algorithms. 

Fast Optimal Attitude Matrix (FOAM) 

The SVD decomposition of B gives a convenient 

representation for adjB, detB, and IIBII:. These can be 

used to write the optimal attitude matrix as [ 15] 

where 

(26) 

and 

(27) 

All the quantities in Eqs. (25)-(27) can be computed 
without performing the SVD of B. In this method, )..m., 
is found by substituting Eq. (25) into 

)..max = tr(AoptBT) • 

which gives, after some matrix algebra, 

0 = ¢( -'max ) 

(28) 

E ( -';ax - II BIi; )2 - 8-\nax det B - 4 lladjBjl; . 
'(29) 

Equations ( 19) and (29) for 1/J (Ara.,) would be 
numerically identical with infinite-precision 
computations. 

Estimator of the Optimal Quaternion 

Davenport's eigenvalue equation, Eq. (13), says that the 
optimal quaternion is orthogonal to all the columns of 
the matrix K - Ama,l. Thus qop1Can be computed by 
normalizing any non-zero column of adj(K - )..m.,I). 
Let F denote the symmetric 3x3 matrix obtained by 
deleting the kth row and kth colup:m from K - Ama,I, 
and let f denote the three-component column vector 
obtained by deleting the kth element from the kth 
column of K - )..m._I. Then the kth element of the 
optimal quaternion is given by 

and the other three elements are · 

(q ) = d(adjF)f, opt l, ... ,k-1,k+l, .•. ,4 

(30) 

(31) 

where the scalar d is determined by normalization of the 
quaternion [16, 17). It is desirable to choose k to index 
the column with the maximum Euclidean norm. 



Because K is symmetric, it is only necessary to examine 
the diagonal elements of the adjoint to determine which 
column to use. This method is the First EStimator of the 
Optimal Quaternion (ESOQ). 

A second EStimator of the Optimal Quaternion 
(ESOQ2) is based on the rotation axis and angle [18]. 
Inserting Eq. (8) into Eqs. (14) and (15) gives 

zcos(<P / 2) = [()..mu + trB)/ - S ]esin(<P / 2) 

and 

(.\max - tr B)cos(</> 12) = zr esin(¢ / 2). 

(32) 

(33) 

Multiplying Eq. (32) by Arna, - trB and substituting Eq. 

(33) gives 

Mesin(</>/ 2) = 0, (34) 

where Mis the 3x3 matrix 

M • (Amax - trB)[(Ama, + tr B)/ - S ]-zzT. (35) 

These computations lose numerical significance if 
Amas - trB and z are near zero, which would be the case 
for zero rotation angle. We can always avoid this 
singular condition by rotating the reference system to 
ensure that trB is less than or equal to zero. Then Eq. 
(34) says that the rotation axis is a null vector of M. 

The columns of adj Mare the cross products of the 
columns of M. Because Mis singular, all these columns 
are parallel, and all are parallel to the rotation axis e. 
Thus we set 

e= Y/IYI • (36) 

where y is the column of adj M (i.e., the cross product) 

with maximum norm. It is only necessary to examine 
the diagonal elements of the adjoint matrix to determine 
which column to use. The rotation angle is found from 
Eq. (33) or one of the components of Eq. (32). The use 
of a rotated reference system to ensure a non-positive 
trB makes Eq. (33) the best choice. With Eq. (36), this 
can be written 

(.\max - tr B)jy!cos(</> / 2) = (z · y)sin(</> / 2), (37) 

which means that there is some scalar h for which 

cos(<P/2) •h(z·y) (38) 

and 

sin(</>/ 2) = h(>max - tr B)IYI. (39) 

Substituting into Eq. (8) gives the optimal unit 
quaternion as 

(.\max - tr B) Y 

Z·Y 

(40) 

Note that it is not necessary to normalize the rotation 
axis. ES0Q2 does not define the rotation axis uniquely 
if M has rank less than two. This includes the case of 
unobservable attitude and also the case of zero rotation 
angle. Requiring trB to be non-positive avoids the zero 
rotation angle singularity, however. 

Comparison of Algorithms for Wahba's Problem 

Extensive tests have shown that all these methods are 
capable of providing equal accuracy [13, 19, 20]. 
Davenport's q method and the SVD method are 
significantly slower than the other methods, with the q 
method being somewhat faster except in the least 
interesting two-observation case. The fastest of the 
other algorithms, QUEST, ESOQ and ESOQ2, are 
nearly equal in speed. The FOAM method has 
intermediate speed. 

The q and SVD methods are the most robust, reliable, 
and accurate estimators, since they are based on well
tested general-purpose matrix algorithms. The faster 
methods are less robust in principle, since they solve 
the quartic characteristic polynomial equation for the 
maximum eigenvalue, a procedure that is potentially 
numerically unreliable. They perform as well as the 
more robust algorithms in practice, though. 

Single-Frame GPS Attitude Determination 

The use of GPS for satellite navigation is widespread; a 
user can compute the three Cartesian components of his 
position and his clock bias from the transit times of 
signals received from no fewer than four satellites of 
the Global Positioning System (GPS) constellation. 
Attitude determination using phase differences of GPS 
signals received by antennas located at different 
locations on the spacecraft is a later development. · 

Pairs of GPS antennas form a set of n ~ 2 baselines {b1} 

in the spacecraft body frame. The m ;a: 4 unit vector 
sightlines {s1} from the user spacecraft to the GPS 
satellites can be computed from the GPS position 
solution. The different path lengths from each GPS 
satellite to the antennas at the two ends of each baseline 
create mn phase differences of the received signals 

(41) 



where the integers n;~ are phase ambiguities, A is the 

attitude matrix, and). is the wavelength of the GPS 
signal. After the integer phase ambiguities have been 
found using one of several algorithms [21, 22), we 
compute the normalized measurements 

z = .\(,;,.mealrured _ 27r n1') 
IJ - 'l'IJ I] • 

The optimal attitude solution is the attitude matrix 
minimizing the loss function · 

Laps(A)==f EIJayCzlJ -b; As)
2

, 

(42) 

(43) 

for some weights aii. This is similar to Wahba's loss 
function, but it is not as easy to solve. Solutions can be 
found with difficulty, however [23]. 

If we knew the representations of the baseline vectors in 
the reference frame, which we denote by {r;} as in 
Wahba's problem, we could use one of the algorithms 
for solving that problem to compute the attitude matrix. 
In view ofEq. (2), we compute these as the r; 
minimizing the loss functions 

L,{r,)==f E1a/zy-r,rs}2
, 

for i = l, 2, ... , n [24). The minimization gives 

r, = s.-1 [E J ai,zi j] • 
where 

(44) 

(45) 

(46) 

These solutions only exist if the matrices S, all have 
rank three, which requires that the sightlines si not be 
·coplanar, as will generally be the case. The 
computational burden is reduced if the weights a,1 are 
independent of the baseline label i, since then all the S; 
will be equal, and only one matrix must to be computed 
and inverted for each set of sightlines. 

The computational burden would also be reduced if we 
reversed the roles of the baselines and sightlines, since 
the matrix corresponding to S1 would depend on the 
baselines in the body frame, which are constant. This 
requires at least three non-coplanar baselines, however, 
which are not always available. · 

This method may give representations of the observed 
and computed vectors in the reference and body frames 
that have different lengths, but they should not differ 
greatly if measurement errors are small. The constraint 
of equal lengths in the two frames can be used to find a 
solution if a matrix S1, or the corresponding matrix 
using baselines, has rank two [24, 25). 

The final step of this method is to solve Wahba's 
problem for the vector sets {b;} and {r1}; the fact that 
they are not unit vectors is not important. There are 
several options for choosing the weights a; in Wahba's 
loss function, but no choice produces an optimal 
minimum of the loss function of Eq. (43), in general. 
The estimates are nearly optimal unless the sightlines 
are nearly coplanar, though; and simulations show that 
the computational advantages of this method do not 
entail a significant loss of accuracy [24). 

SEQUENTIAL METHODS 

When observations are acquired over a range of times, 
it is often convenient to employ a filter to propagate 
past attitude information to the current time and then 
add information from current measurements. This 
generally provides more accurate attitude solutions than 
are obtainable from single-frame estimators, and can 
also provide estimates when insufficient data are 
available at a single time for single-frame estimators to 
provide any solution at all. A prominent example of the 
latter is magnetometer-only attitude determination [26]. 
Sequential methods require some knowledge of system 
dynamics for the time propagation. This can be 
computed from rotational dynamics, e.g. from Euler's 
dynamical equations, or obtained from gyro-sensed 
rates. 

The most commonly employed sequential method is the 
Kalman Filter [27}, or more precisely, the extended 
Kalman filter (EKF) [28, 29}, since the spacecraft 
attitude estimation.problem is nonlinear. Applications 
of the EKF to spacecraft attitude determination up to 
1982 have been surveyed in the literature [30). Several 
different attitude parameterizations have been used, 
with the earliest being the Euler angles; but the 
quaternion has become the most common 
parameterization [30}. We will discuss only the 
quaternion parameterization of the EKF, but we also 
discuss sequential methods related to Wahba's problem 
that are not EK.Fs. 

Additive Quaternion EKF 

For Kalman filtering, we need the time propagation 
equations and the measurement update equations for the 
state vector estimate and its covariance. The state vector 
will generally include components in addition to the 
quaternion, but we will ignore these in order to 
emphasize the attitude representation. We consider the 
time propagation first. 



Quaternion dynamics are given in our notation by 

(47) 

which is a convenient way of writing Eq. (35) of 
Section 55.1 in terms of the quaternion product defined 
by 

p®q= 

Equation (47) for the quaternion kinematics is ex.act, by 
the definition of the angular velocity vector, so no 
additive process noise appears in this equation; process 
noise can only enter through m. 

For the additive filter, we write the quaternion and rate 
errors as additive errors 

q ... q+Aq 

and 

m = ci> + .6.m , 

(49) 

(50) 

where the carets indicate estimates, which are expected 
values in the additive. EKF. 

The quaternion error dynamics are found by inserting 
Eqs. (49) and (50) into Eq. (47), equating zeroth and 
first order terms in the errors, and ignoring second order 
terms, giving 

and 

Equation (5 l) can be written in matrix form as [ I J 

q tn(co)q, 

where 

O(m) = -[rox] ro 
-ol O 

(52) 

(53) 

(54) 

and [mx] is the cross product matrix 

0 -W3 w2 

[mx] = W3 0 -WI (55) 

-w2 w1 0 

The matrix O(m) is skew-symmetric, so Eqs. (47) and 

(53) preserve the norms bf q and q. Equation (53) has 

the solution 

where <1> 4•4 (1,t*) is the orthogonal quaternion state 
transition matrix that obeys the differential equation 

(56) 

(57) 

with the initial condition that <I> 4..i (tk ,It) be the 4x4 

identity matrix. The solution of Eq. (52), 

Llq(t) <P4x4(t,l1 )Llq(tk) 

+.!.J' <I> (t,t') .6.m(t') ®q(t')dt', 
2 1, 4x4 O 

(58) 

is used to find the time propagation of the covariance of 
the four-component quaternion 

(59) 

where E denotes the expected value. 

Instead of continuing blindly with the development of 
the additive quaternion EKF, we will discuss three 
problems with this approach [30-32]. 

The first problem is a conceptual one. The expected 
value of q cannot be a unit quaternion, because 
restricting the probability distribution in quaternion 
space to the surf ace of a unit sphere means that its 
expected value must be inside the sphere. It is true that 
the norm of q only differs from unity by second order 
in Aq, and that the EKF is inherently a first-order 

method; but we would like our optimal estimate to be a 
properly normalized quaternion. 

The second problem is computational and is related to 
the first one. If the quaternion errors are small, they lie 
approximately in the plane tangent to the quaternion 
sphere at the expected value, which means that they are 
nearly orthogonal to the expected value, or 
algebraically, 

(60) 



This equation together with Eq. (59) implies that q is 

an eigenvector of the covariance matrix with a very 
small eigenvalue, i.e. that the covariance is nearly 
singular [30]. This is acceptable in principle, but 
numerical errors can lead to a negatjve eigenvalue, 
losing positive semidefiniteness. 

The most'direct response to the normalization question 
is brute force normalization of the quaternion, which 
only changes the update to second order, and is 
therefore outside the purview of the EKF. Other 
approaches employ pseudo-measurements of the 
quaternion or of its norm. None of these modifications 
addresses the covariance singularity question [31, 32]. 

A totally different approach is to relax the requirement 
of quaternion normalization by letting 

which is an orthogonal matrix for any q. This avoids 
both the normalization and zero covariance problems; 
the covariance is nonsingular because the norm of q is 
not known exactly. This approach implicitly carries the 
quaternion norm as an additional, unobservable degree 
of freedom, which is undesirable. 

The theoretically ideal solution would be some sort of 
optimization procedure that constrains the estimate to 
the non-Euclidean manifold of the rotation group, or 
equivalently to the unit sphere i_n quaternion space. A 
preliminary attempt in this direction has not led to a 
useful algorithm, however [33]. 

None of these alternatives addresses the third problem, 
which is that the additive EKF is inefficient. There is no 
reason to compute 4x4 covariance and state transition 
matrices when an alternative employing 3x3 matrices is 
available. We now turn to this alternative, which has 
.come to be known as the multiplicative quaternion 
extended Kalman filter, or MEKF. 

Multiplicative Quaternion EKF (MEKF) 

This algorithm was developed in 1969 [34], and has 
been used in NASA programs since 1978 [35]; our 
discussion is based on [30, 36]. The MEKF retains Eqs. 
(50), but replaces Eq. (49) by 

q ... &j®q. (62) 

The estimation error is represented by a multiplicative 
quaternion rather than an additive one, accounting for 
the name of the algorithm. The dynamics of q is 
defined by Eq. (51), rather than from the expected value 
of q. This gives the dynamic behavior we expect of the 

estimate, and allows q to be normalized exactly, rather 
than only to first order. In the MEKF q equals the 
expected value only to first order in the errors, which is 
consistent with the linear EKF approximation. 

Equation (62) shows that {Jq is a unit quaternion, also. 
The EKF implicitly assumes small estimation errors, so 
{Jq is close to the identity quaternion. Although the 
rotation group has no global, continuous, nonsingular, 
three-dimensional parameterization [37]; it has plenty 
of local, continuous, nonsingular, three-dimensional 
parameterizations [38]. We will use one of these to 
parameterize {Jq. Since the state vector in a Kalman 
filter is conventionally designated by x, we will use a 
three-vector x to parameterize {Jq. 

We consider four parameterizations. The first takes x to 
be the rotation vector cp = tp e, so from Eq. (8), 

(x~xl)sin(lxlt 2) 
6q(x)= 

cos(lxl/ 2) 
(63a) 

This has the advantage that the covariance includes the 
angular variances in radians2, but it is numerically 
inconvenient. A special form, such as a Taylor series, 
must be used near the singularity at x = 0. 

We can retain the interpretation of the covariance 
matrix in the small angle approximation by setting x to 
twice the vector part of {Jq, as in [30]; 

x/2 
6q(x) (63b) 

A better parameterization is to set x equal to twice the 

Gibbs vector oq/ 6q4 , giving 

6q(x)= ~Ix I· 
4+lxj2 2 

(63c) 

This is equivalent to using a first-order approximation 
in x and then normalizing the quaternion, which is 
useful for minimizing roundoff errors. 

As a fourth alternative, x can be four times the vector of 

modified Rodrigues parameters oq/ (I + 6q 4 ), giving 

6q(x) (63d) 

This parameterization has the computational advantage 
of not requiring any transcendental functions. 



These definitions of x are equivalent for an EKF, since 
they have the same first-order approximation, 

x/2 oq(x)~ ; (64) 
I 

but they all differ in higher orders. 

At this point, the MEKF is treated as a conventional 
EKF for the parameter x, so we need to develop 
equations for the time propagation of its expectation 
and covariance. Substituting Eqs. (47) and (51) into the 
time derivative of Eq. (62) gives 

M : l®q Sq®q+toq®I : l®q · (65) 

Substituting Eq. (62) on the left side and cancelling the 
common factor q from all terms then leads to 

Sq= i[[ : l®Sq-Sq®I : ll · (66) 

Substituting Eq. (64) into Eq. (66) and using Eq. (48) 
gives the vector part, to first order in x and Aro, as 

i = -roxx + 6.ro. (67) 

The scalar part of Eq. (66) is trivially satisfied to first 
order. Equation (67) has the solution 

(68) 

where cl>3, 3(t,tk) is the solution of 

(69) 

with the initial condition that cl>3-3(t,tk) be the 3x3 
identity matrix. Equation (69) has the same form as the 
kinematic equation for the attitude matrix, Eq. (11) of 
Section 55.1, so the 3x3 error state transition matrix 
can be simply computed by 

(70) 

where Eq. (31) of Section 5 5 .1 and the notation of Eq. 

(8) give A(t) as a function of q(t) . Thus no separate 

integration of Eq. (69) is required. 

Equation (68) and the assumption that Aro has zero 
mean give the propagation of the expected value of x as 

(71) 

where i(tk + +) is its value after a measurement 

update at time tt and a reset operation described below. 

The reset sets i(tk + +) to zero, so x(t) is identically 

zero between measurements and there is no need to 
propagate it. The quaternion attitude estimate is 
propagated by Eq. (56), and i takes a nonzero value 
only at times when measurements are being processed. 

Equation (67) gives the propagation of the three-vector 
error state 6.x = x - i as 

which is simpler than Eq. (58) in the additive EKF. This 
is used to propagate of the 3x3 covariance 

~><3 = E{{6.x)(6.x{} (73) 

following standard EKF practice [28, 29). If the EKF 
state vector contains components other than attitude 
errors, these must be propagated in the usual manner, 
also. Details can be found in the literature [30, 35, 36]. 

Measurement Model and Update 

One of the benefits of the EKF is its generality; it is not 
restricted to vector measurements, but can handle a 
wide variety of measurement types. This includes 
horizon crossings from scanning earth sensors, GPS 
phase measurements, and the horizontal or vertical 
position of an object detected in the focal plane of a star 
tracker or digital sun sensor, for example. It can be 
advantageous to convert measurements to unit vectors 
to provide a standard interface [39]. This may require a 
suboptimal representation of sensor measurement 
errors, but this is seldom important in practice. 

Consider a scalar measurement for simplicity, since a 
vector measurement can be built up from its scalar 
components. The measurement is modeled as a scalar 
function x of a vector b in the spacecraft body frame, 
with white noise added. 

z = x(b) + white measurement noise . (74) 

Different measurements will have different x and b, in 
general, but we omit all distinguishing labels for 
notational convenience. The representation of b in the 
body frame is the mapping of its representation r in the 
reference frame by the attitude matrix: 

b== A(q)r== A(&] ®q)r .. A(&/)A(q)r =A(&/)b, (75) 

where b s A(q)r is the vector in the body frame that is 

predicted by the estimated quaternion. 



~ . . 

Equation (64) gives the first-order approximation to the 
attitude matrix 

A(&/)=-/-[xx]. (76) 

Substituting this into Eqs. (74) and (75) gives, to first 
order in x, 

x(b) - x(b-xxb) - x(b)-(Vx) ·(x x h) 
• x(b) +(Vxxb)·x, 

(77) 

where V x is the gradient of the measurement function 

with respect to its argument. Thus the sensitivity of the 
scalar measurement z with respect to xis the row vector 

(78) 

This equation has an interesting interpretation for an 
imaging sensor. If z is the horizontal displacement of an 
image in a fofal plane, then Vx is in the horizontal 
direction. If b is perpendicular to the focal plane, 
which is approximately true for a sensor with a narrow 
field of view, then His in the vertical direction in the 
focal plane, which is the axis of a rotation that would 
cause a horizontal displacement of the image. 

The computation of the Kalman gain Kand the 
covariance update follow standard EKF practice [28, 
29]. The state update is given by 

x(tk +) "'x(tk -) + K(z - i) 

= x(tk -) + K[z- x(b)- H:i(tk-)], 

where z denotes the measured value. 

A reset operation is performed after processing all the 
measurements taken at one time. This operation uses 
one of Eqs. (63) to reset the quaternion estimate by 

(80) 

while simultaneously setting the expected value of the 
attitude error x(tk + +) to zero, thereby moving the 

measurement information from i into q . 

Resets can be performed after each measurement 
update, in which case the term Hx(t1 -) in Eq. (79) is 

always zero; but the reset is usually delayed for 
computational efficiency until all the updates for a set 
of simultaneous measurements have been performed. It 
is imperative to perform a reset before beginning the 
next time propaiation, however, to avoid the necessity 
of propagating x(t) between measurements. 

The operation of the MEKF is much more 
straightforward than indicated by this description, 

which has attempted to explain and motivate as well as 
to describe the algorithm. 

Quaternion Measurement Models 

A modem star tracker may track between 5 and 50 stars 
simultaneously, match them to stars in an internal star 
catalogue, and compute its attitude as an inertially
referenced quaternion using orie of the single frame 
methods discussed above. The computation can also 
estimate the covariance of the attitude error angle 
vector [l l, 14, 15). It is a simple matter to transform 
these quantities from the star tracker reference frame to 
the spacecraft frame to produce a quaternion 

observation qobs and a 3x3 measurement covariance 

matrix R. The most convenient way to present this 
information to the Kalman filter is in terms of one of 
the three-dimensional parameterizations of the 
deviation between the observed and predicted attitudes 

qob, • c5q(xo1,,)® q(-) . 

The measurement model is simply 

h(x) = X, 

(81) 

(82) 

so H == oh/ ax is the 3x3 identity matrix and R is the 

covariance of this error angle vector. The state update 
simplifies to 

i( +) • i(-) + fjxi-)[fj,J-) + Rr1[x
0
bs - i(-)]. (83) 

It is important to use the same three-dimensional 
parameterization in the observation processing, Eq. 
(81), as is used in the reset, Eq. (80). With this proviso, 

we see that when R << fjx3 (-) , so that i( +) == xohs, 

the reset quaternion estimate is q( +) = qob, • 

Projections in quaternion space can be used to map a 
vector measurement into a linear quaternion 
measurement [40). This mapping is based on the 
observation that the quaternion using the minimum
angle rotation to map a reference vector r into the body 
frame vector b is 

bxr I 
l+b·r · 

(84) 

The most general quaternion that maps r 1 into b1 is 

[ 
bsin(rtb/2) l [ rsin(O /2) l q= ®qi® r 
cos( Oh I 2) cos{ 0, I 2) . (85) 

= [cos(rt / 2)Jq1 +[sin(O / 2)]%, 



where {)-b and fr, are arbitrary angles of rotation about 
band r, respectively, {)- = {)-b +fr,, and 

q = I I b+ r I (8 
· 

2 
- ~2(1 + b · r) 0 · 

6
) 

The quaternion q2 maps r into b by means of a 180° 
rotation about the bisector of b and r. 

Equation (85) expresses q as a linear combination of the 
two orthogonal quaternions q1 and q2, which constitute 
an orthogonal basis for the two-dimensional subspace 
of four-dimensional quaternion space consistent with 
the measurement. The four quaternions q1, q2, 

I [-(bxr) l 
% e ~2(1-b·r) 1-b·r ' 

(87) 

and 

_ I I b-r I 
% = ~2(1-b·r) 0 

(88) 

constitute a complete orthogonal basis for four
dimensional quaternion space. Our linear measurement 
is created by noting that the true quaternion must be in 
the subspace spanned by q1 and q2, so it orthogonal to q3 

and q4. This means that we can define a two-component 
measurement vector x obeying the equation 

X = [% q4 f q = white measurement noise. (89) 

This measurement model has been employed in an 
attitude filter with guaranteed convergence [41). 

Sequential Methods Related to Wahba's Problem 

We have seen that the EKF estimates deviations from a 
nominal attitude, so some a priori attitude estimate is 
required. Single-frame solutions of Wahba's problem 
do not require an a priori attitude estimate. We now 
discuss attempts to combine the best features of these 
two approaches [42-44]. 

Filter QUEST 

The nine components of the 'attitude profile matrix' B, 
defined by Eq. (5), contain full information about the 
attitude (with three degrees of freedom) and the angular 
error covariance (with six independent components), so 
the EKF could be implemented on this matrix [5, 42]. 
This provides little computational advantage, though, so 
Shuster proposed a simpler Filter QUEST algorithm, 
based on propagating and updating B: 

(90) 

where tl>3, 3(tk ,t,t-1) is the error state transition matrix of 

Eq. (70) and the sum is over observations at time tk. The 
"fading memory" factor,µ< l, approximates the effect 
of the process noise. Any algorithm for solving 
Wahba's problem can estimate the attitude from B(t,). 

Recursive QUEST (REQUEST) 

This alternative sequential algorithm [43] propagates 
and updates Davenport's K matrix by 

K(td= µtl>4,4(tk,t*_1)K(tk-1)c.t>!,4(tdk-i)+ }:1a,K1, 

(91) 

where ti> 4, 4 (tk ,ft-i) is the quaternion state transition 
matrix of Eq. (56) and K; is the Davenport matrix for a 

single observation, 

(92) 

Filter QUEST and REQUEST are mathematically 
equivalent, but Filter QUEST requires fewer 
computations. Neither has been competitive with the 
EKF in practice, largely due to the suboptimality of the 
fading memory approximation of the process noise. 
Computing the fading memory factor by a Kalman
gain-like algorithm gives better performance, 
but sacrifices much of the attractive simplicity of these 
methods [44]. 

SUMMARY 

Attitude determination is a crucial part of every space 
mission that employs actively controlled spacecraft or 
collects data whose interpretation depends on the 
orientation of the spacecraft. This includes almost every 
space mission. Attitude accuracy requirements vary 
dramatically, from tens of degrees to hundredths of 
arcsecond, covering a range of more than six orders of 
magnitude. Attitude determination for attitude control 
must be performed onboard the spacecraft, of course; 
but attitude determination for scientific data analysis 
can be performed onboard, on the ground, or split 
between the two places. Dramatic decreases in the 
price, weight, and power of space-hardened 
microprocessors has moved the center of gravity of 
attitude determination toward the spacecraft. Some 
'smart' sensors, particularly star trackers, use embedded 
microprocessors, databases, and computational 
algorithms to compute attitude autonomously. Much of 
the techniques used for attitude determination are 
classical, but the field never ceases to advance. 
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